If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+6=0
a = 2; b = -20; c = +6;
Δ = b2-4ac
Δ = -202-4·2·6
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{22}}{2*2}=\frac{20-4\sqrt{22}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{22}}{2*2}=\frac{20+4\sqrt{22}}{4} $
| P1/2(3x+7)-1/3(6x+12)=-11 | | 9r+9=12r | | 78k=89 | | 3^(5x)=6 | | 18-4n=2(5-4n) | | -5(x-4)=1200 | | (4n-5n)5=40 | | 10x-65=7x-14 | | 8x+9=17x-4 | | 5-(7+2y)=y-10 | | x2+12x+44=9 | | 8.95=3x+4.29 | | z/9+23=25 | | 109.3=t-184.9 | | 20-7b=13 | | 14(x-1)=42 | | 2(3-7x)=-39+x | | 4m+1=12 | | B=40.75-0.07x | | 7m|+4=25 | | 20=30-2x-3x | | 29+5q=99 | | -109.3=t+184.9 | | 43n-23=-6 | | 7+6x-4+2x=37 | | 117+j=259 | | 2(3x+6)=7x | | 10(a-1)+4=2a+5a+21 | | -2(m+3)=5m=-34 | | 2(n-65)=20 | | (6x)+(x-2)=180 | | 12(x-4)=6(x+1) |